Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
J Med Internet Res ; 23(4): e23948, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1133811

RESUMEN

BACKGROUND: Effectively and efficiently diagnosing patients who have COVID-19 with the accurate clinical type of the disease is essential to achieve optimal outcomes for the patients as well as to reduce the risk of overloading the health care system. Currently, severe and nonsevere COVID-19 types are differentiated by only a few features, which do not comprehensively characterize the complicated pathological, physiological, and immunological responses to SARS-CoV-2 infection in the different disease types. In addition, these type-defining features may not be readily testable at the time of diagnosis. OBJECTIVE: In this study, we aimed to use a machine learning approach to understand COVID-19 more comprehensively, accurately differentiate severe and nonsevere COVID-19 clinical types based on multiple medical features, and provide reliable predictions of the clinical type of the disease. METHODS: For this study, we recruited 214 confirmed patients with nonsevere COVID-19 and 148 patients with severe COVID-19. The clinical characteristics (26 features) and laboratory test results (26 features) upon admission were acquired as two input modalities. Exploratory analyses demonstrated that these features differed substantially between two clinical types. Machine learning random forest models based on all the features in each modality as well as on the top 5 features in each modality combined were developed and validated to differentiate COVID-19 clinical types. RESULTS: Using clinical and laboratory results independently as input, the random forest models achieved >90% and >95% predictive accuracy, respectively. The importance scores of the input features were further evaluated, and the top 5 features from each modality were identified (age, hypertension, cardiovascular disease, gender, and diabetes for the clinical features modality, and dimerized plasmin fragment D, high sensitivity troponin I, absolute neutrophil count, interleukin 6, and lactate dehydrogenase for the laboratory testing modality, in descending order). Using these top 10 multimodal features as the only input instead of all 52 features combined, the random forest model was able to achieve 97% predictive accuracy. CONCLUSIONS: Our findings shed light on how the human body reacts to SARS-CoV-2 infection as a unit and provide insights on effectively evaluating the disease severity of patients with COVID-19 based on more common medical features when gold standard features are not available. We suggest that clinical information can be used as an initial screening tool for self-evaluation and triage, while laboratory test results should be applied when accuracy is the priority.


Asunto(s)
COVID-19 , Aprendizaje Automático , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Triaje , China , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Reproducibilidad de los Resultados
2.
J Med Internet Res ; 23(1): e25535, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1011363

RESUMEN

BACKGROUND: Effectively identifying patients with COVID-19 using nonpolymerase chain reaction biomedical data is critical for achieving optimal clinical outcomes. Currently, there is a lack of comprehensive understanding in various biomedical features and appropriate analytical approaches for enabling the early detection and effective diagnosis of patients with COVID-19. OBJECTIVE: We aimed to combine low-dimensional clinical and lab testing data, as well as high-dimensional computed tomography (CT) imaging data, to accurately differentiate between healthy individuals, patients with COVID-19, and patients with non-COVID viral pneumonia, especially at the early stage of infection. METHODS: In this study, we recruited 214 patients with nonsevere COVID-19, 148 patients with severe COVID-19, 198 noninfected healthy participants, and 129 patients with non-COVID viral pneumonia. The participants' clinical information (ie, 23 features), lab testing results (ie, 10 features), and CT scans upon admission were acquired and used as 3 input feature modalities. To enable the late fusion of multimodal features, we constructed a deep learning model to extract a 10-feature high-level representation of CT scans. We then developed 3 machine learning models (ie, k-nearest neighbor, random forest, and support vector machine models) based on the combined 43 features from all 3 modalities to differentiate between the following 4 classes: nonsevere, severe, healthy, and viral pneumonia. RESULTS: Multimodal features provided substantial performance gain from the use of any single feature modality. All 3 machine learning models had high overall prediction accuracy (95.4%-97.7%) and high class-specific prediction accuracy (90.6%-99.9%). CONCLUSIONS: Compared to the existing binary classification benchmarks that are often focused on single-feature modality, this study's hybrid deep learning-machine learning framework provided a novel and effective breakthrough for clinical applications. Our findings, which come from a relatively large sample size, and analytical workflow will supplement and assist with clinical decision support for current COVID-19 diagnostic methods and other clinical applications with high-dimensional multimodal biomedical features.


Asunto(s)
COVID-19/diagnóstico , Sistemas de Apoyo a Decisiones Clínicas , Salud , Aprendizaje Automático , Neumonía Viral/diagnóstico , COVID-19/diagnóstico por imagen , Diagnóstico Diferencial , Humanos , Persona de Mediana Edad , Neumonía Viral/diagnóstico por imagen , SARS-CoV-2 , Máquina de Vectores de Soporte , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA